Performance of some discriminant analysis techniques
Michael O. Olusola and
Sidney I. Onyeagu
International Journal of Operational Research, 2023, vol. 47, issue 4, 483-507
Abstract:
This paper re-appraises the use of the minimised sum of deviations by the proportion method (MSDP), the linear discriminant analysis (LDA) embodied in Minitab and the logit discriminant analysis (LoDA), for allocating observations into one of two mutually exclusive groups using some examples. In a recent paper, the MSDP was proposed as a means of generating a discriminant function that separates observations in a training sample (or development sample) of known group membership into specified groups. In the MSDP formulation, the sum of the proportion of exterior deviations is minimised subject to the group separation constraints, the normalisation constraint, the upper bound constraints on proportions of exterior deviations and the sign unrestriction vis-à-vis the non-negativity constraints. The decision rule on group-membership prediction is constructed using the apparent error rate. This study compares the performance of the MSDP with the LDA and LoDA based on their classification accuracy. The obtained results indicate that the LoDA is not suitable for the examples considered and that the MSDP is an appropriate alternative to the LDA.
Keywords: binary classification; hit rate; linear discriminant function; linear programming; minimised sum of deviation by proportion method. (search for similar items in EconPapers)
Date: 2023
References: Add references at CitEc
Citations:
Downloads: (external link)
http://www.inderscience.com/link.php?id=132816 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:ids:ijores:v:47:y:2023:i:4:p:483-507
Access Statistics for this article
More articles in International Journal of Operational Research from Inderscience Enterprises Ltd
Bibliographic data for series maintained by Sarah Parker ().