EconPapers    
Economics at your fingertips  
 

The impact of project network topology and resource restrictions on the performance of schedule generation schemes: a comparative study

Raafat Elshaer

International Journal of Operational Research, 2024, vol. 51, issue 3, 367-381

Abstract: Parallel, and serial schedule generation schemes (SGS) are the core of most heuristic solution procedures for the resource-constrained project scheduling problem. The solution-quality of the generated schedules using the two schemes depends on the project's network topology and resource restrictions. According to the most recent publication, the network topology is measured using four indicators: serial/parallel, activity distribution, length of arcs, and topological float, whereas resource restrictions are assessed using two parameters: resource use and resource-constrainedness. The main objective is to investigate the impact of the project's network topology and resource parameters on the performance of the two schemes. A study-based generated datasets has been applied using a genetic algorithm with the two schemes. The computational results demonstrate that out of four indicators, serial/parallel has the most significant impact on distinguishing between the performance of the two SGS schemes. Moreover, resource use also impacts the discrimination between the two schemes.

Keywords: project network topology; resource-constrained project; schedule generation schemes; SGS. (search for similar items in EconPapers)
Date: 2024
References: Add references at CitEc
Citations:

Downloads: (external link)
http://www.inderscience.com/link.php?id=142376 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:ids:ijores:v:51:y:2024:i:3:p:367-381

Access Statistics for this article

More articles in International Journal of Operational Research from Inderscience Enterprises Ltd
Bibliographic data for series maintained by Sarah Parker ().

 
Page updated 2025-03-19
Handle: RePEc:ids:ijores:v:51:y:2024:i:3:p:367-381