EconPapers    
Economics at your fingertips  
 

Machine learning techniques applied to US army and navy data

Jong-Min Kim, Chuwen Li and Il Do Ha

International Journal of Productivity and Quality Management, 2020, vol. 29, issue 2, 149-166

Abstract: We apply machine learning techniques to the synthetic data (Stevens and Anderson-Cook, 2017a), which is univariate data with a binary response of passing or failing for complex munitions generated to match age and usage rate, found in US Department of Defense complex systems (the army and navy). We propose applying machine learning techniques to predict the binary response of passing or failing for the army and navy data.

Keywords: binary response data; artificial neural networks; ANN; ridge; lasso; elastic net. (search for similar items in EconPapers)
Date: 2020
References: Add references at CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://www.inderscience.com/link.php?id=105976 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:ids:ijpqma:v:29:y:2020:i:2:p:149-166

Access Statistics for this article

More articles in International Journal of Productivity and Quality Management from Inderscience Enterprises Ltd
Bibliographic data for series maintained by Sarah Parker ().

 
Page updated 2025-03-19
Handle: RePEc:ids:ijpqma:v:29:y:2020:i:2:p:149-166