Bayesian quantile regression and unsupervised learning methods to the US Army and Navy data
Jong-Min Kim,
Chuwen Li and
Il Do Ha
International Journal of Productivity and Quality Management, 2021, vol. 32, issue 1, 92-108
Abstract:
We apply the Bayesian quantile regression (BayesQR) model for binary response variables and the unsupervised learning methods to synthetic data (Stevens and Anderson-Cook, 2017a, 2017b), which is univariate data with a binary response of passing or failing for complex munitions generated to match age and usage rate found in US Department of Defense complex systems (Army and Navy). Instead of the generalised linear model (GLM) used in Stevens and Anderson-Cook (2017a), we propose to apply the BayesQR to predict a binary response of passing or failing for the Army and Navy data as well as the unsupervised learning methods. First, we want to find the best models for the Army and Navy through comparing statistical inference of BayesQR and GLMs and calculating their percentage correctly classified (PCC) which tests the accuracy of a prediction. The second method focuses on clustering using the k-means clustering and random forests based on the results of BayesQR. We compare models with different covariates to find the one that can best divide data into two groups: Army and Navy.
Keywords: generalised linear model; GLM; BayesQR; k-means; random forests. (search for similar items in EconPapers)
Date: 2021
References: Add references at CitEc
Citations:
Downloads: (external link)
http://www.inderscience.com/link.php?id=112016 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:ids:ijpqma:v:32:y:2021:i:1:p:92-108
Access Statistics for this article
More articles in International Journal of Productivity and Quality Management from Inderscience Enterprises Ltd
Bibliographic data for series maintained by Sarah Parker ().