EconPapers    
Economics at your fingertips  
 

Solution of uncertain linear systems of equations with probability-box parameters

Naijia Xiao, Robert L. Mullen and Rafi L. Muhanna

International Journal of Reliability and Safety, 2018, vol. 12, issue 1/2, 147-165

Abstract: The solution of linear systems of equations is often a component of engineering simulation and modelling. Often, the system parameters are uncertain. One representation of this uncertainty is the use of probability-boxes (or p-boxes), which do not require complete information about the probability distribution underlying the random variables. P-boxes are the bounds on allowable continuous distribution function for the random variables. Arithmetic operations on p-boxes yield guaranteed bounds on the probability distribution of the solution, regardless the nature of dependency. The solutions of p-box linear systems of equations are presented in the context of FEA of structural systems. Loading and material uncertainties are described by p-boxes. Earlier Monte-Carlo p-box approach was limited to independent uncertainties. The governing p-box linear equations are solved by an iterative approach using a fixed-point formulation. The resulting formulation gives guaranteed bounds of the probability distribution of the structural responses, at a high computational efficiency and a low overestimation level.

Keywords: uncertainty; probability-box; matrix decomposition; iterative enclosure method. (search for similar items in EconPapers)
Date: 2018
References: Add references at CitEc
Citations:

Downloads: (external link)
http://www.inderscience.com/link.php?id=92515 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:ids:ijrsaf:v:12:y:2018:i:1/2:p:147-165

Access Statistics for this article

More articles in International Journal of Reliability and Safety from Inderscience Enterprises Ltd
Bibliographic data for series maintained by Sarah Parker ().

 
Page updated 2025-03-19
Handle: RePEc:ids:ijrsaf:v:12:y:2018:i:1/2:p:147-165