EconPapers    
Economics at your fingertips  
 

Extrapolation of extreme traffic load effects on a cable-stayed bridge based on weigh-in-motion measurements

Naiwei Lu, Yang Liu and Michael Beer

International Journal of Reliability and Safety, 2018, vol. 12, issue 1/2, 69-85

Abstract: The steadily growing traffic loading may become a hazard for the bridge safety. Compared to short and medium span bridges, long-span bridges suffer from simultaneous presence of multiple vehicle loads. This study presents an approach for extrapolating probabilistic extreme effects on long-span bridges based on weigh-in-motion (WIM) measurements. Three types of stochastic traffic load models are simulated based on the WIM measurements of a highway in China. The level-crossing rate of each stochastic traffic load is evaluated and integrated for extrapolating extreme traffic load effects. The probability of exceedance of a cable-stayed bridge is evaluated considering a linear traffic growth model. The numerical results show that the superposition of crossing rates is effective and feasible to model the probabilistic extreme effects of long-span bridges under the actual traffic loads. The increase of dense traffic flows is sensitive to the maximum load effect extrapolation. The dense traffic flow governs the limit state of traffic load on long-span bridges.

Keywords: bridge; traffic load; extreme value; level-crossing theory; weigh-in-motion; probability of exceedance. (search for similar items in EconPapers)
Date: 2018
References: Add references at CitEc
Citations:

Downloads: (external link)
http://www.inderscience.com/link.php?id=92504 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:ids:ijrsaf:v:12:y:2018:i:1/2:p:69-85

Access Statistics for this article

More articles in International Journal of Reliability and Safety from Inderscience Enterprises Ltd
Bibliographic data for series maintained by Sarah Parker ().

 
Page updated 2025-03-19
Handle: RePEc:ids:ijrsaf:v:12:y:2018:i:1/2:p:69-85