Worst case deterministic feasibility and multiobjective robustness measures for engineering design optimisation
Babak Besharati and
Shapour Azarm
International Journal of Reliability and Safety, 2006, vol. 1, issue 1/2, 40-58
Abstract:
Nearly all real-world engineering design optimisation problems have parameters with uncontrollable variations. Such variations can significantly degrade the performance of optimum design solutions in terms of their feasibility and/or objective functions values, as obtained by multiobjective design optimisation methods. We present a deterministic feasibility and multiobjective optimisation approach, based on some worst case measures, for generating robustly non-dominated optimal solutions. Following this approach, for uncontrollable parameter variations, we can obtain a (1) feasibly robust design: for which no constraint is violated and (2) multiobjectively robust design: for which, with respect to a target and in a multiobjective sense, minimal distance between worst and best case points (or variability) and minimal distance of a worst case point from a target are obtained. We illustrate and verify the approach with a numerical and an engineering example.
Keywords: multiobjective optimisation; robust design; feasibility robustness; multiobjective robustness; engineering design optimisation; reliability. (search for similar items in EconPapers)
Date: 2006
References: Add references at CitEc
Citations:
Downloads: (external link)
http://www.inderscience.com/link.php?id=10689 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:ids:ijrsaf:v:1:y:2006:i:1/2:p:40-58
Access Statistics for this article
More articles in International Journal of Reliability and Safety from Inderscience Enterprises Ltd
Bibliographic data for series maintained by Sarah Parker ().