An interval-based technique for FE model updating
Stefano Gabriele and
Claudio Valente
International Journal of Reliability and Safety, 2009, vol. 3, issue 1/2/3, 79-103
Abstract:
Model updating techniques are largely used in civil and mechanical engineering to obtain reliable FE models. The model parameters are iteratively adjusted until the model response matches the measured structural response within a given tolerance. The task is made difficult by the uncertainty that affects both the structural response and the model parameters. In this work, the uncertainty is taken into account by a proper formulation of the problem in the framework of interval analysis. Uncertainty is replaced by interval numbers, functions are replaced by their thin or thick natural extension and the inclusion theorem is exploited to find the problem solution. Sample applications are illustrated using a modal representation of the structure. A numerical example is used to discuss the potential of the proposed method. A case study is solved to demonstrate the advantages of the method with respect to conventional updating techniques.
Keywords: interval analysis; finite element method; FEM; model updating; global optimisation; uncertainty. (search for similar items in EconPapers)
Date: 2009
References: Add references at CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.inderscience.com/link.php?id=26836 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:ids:ijrsaf:v:3:y:2009:i:1/2/3:p:79-103
Access Statistics for this article
More articles in International Journal of Reliability and Safety from Inderscience Enterprises Ltd
Bibliographic data for series maintained by Sarah Parker ().