Predictive maintenance using FMECA method and NHPP models
Nishit Kumar Srivastava and
Sandeep Mondal
International Journal of Services and Operations Management, 2014, vol. 19, issue 3, 319-337
Abstract:
Most of predictive maintenance technologies are inaccessible to small scale and medium scale industries due to their demanding cost. This paper proposes a predictive maintenance policy using failure mode effect and criticality analysis (FMECA) and non-homogeneous Poisson process (NHPP) models which require minimal use of advanced monitoring technologies and sophisticated data acquisition systems. Most of the repairable systems show long term reliability degradation with repeated overhauls. Here, critical component of a system or machinery exhibiting sad (deteriorating) trend is used as an indicator to predict overall maintenance time of a system. Firstly, the component to be used as an indicator for predictive maintenance is chosen using FMECA method, in which the most critical component is chosen. Secondly, the failure data of the chosen component is analysed using NHPP models and based on analysis of the data, relevant NHPP model is selected and finally, the Mean Time Between Failure (MTBF) of the component is compared with the threshold mean time between failure [MTBF(Th)] of the component to decide the overall maintenance time for the system. The developed methodology is validated on an overhead crane in a steel manufacturing company.
Keywords: predictive maintenance; NHPP models; FMECA; failure mode effects and criticality analysis; non-homogeneous Poisson process; overhead cranes; steel manufacturing; maintenance policy. (search for similar items in EconPapers)
Date: 2014
References: Add references at CitEc
Citations:
Downloads: (external link)
http://www.inderscience.com/link.php?id=65367 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:ids:ijsoma:v:19:y:2014:i:3:p:319-337
Access Statistics for this article
More articles in International Journal of Services and Operations Management from Inderscience Enterprises Ltd
Bibliographic data for series maintained by Sarah Parker ().