EconPapers    
Economics at your fingertips  
 

Optimal service policies under learning effects

Geoffrey S. Ryder, Kevin G. Ross and John T. Musacchio

International Journal of Services and Operations Management, 2008, vol. 4, issue 6, 631-651

Abstract: For high-value workforces in service organisations such as call centres, scheduling rules rely increasingly on queueing system models to achieve optimal performance. Most of these models assume a homogeneous population of servers, or at least a static service capacity per service agent. In this work we examine the challenge posed by dynamically fluctuating service capacity, where servers may increase their own service efficiency through experience; they may also decrease it through absence. We analyse the special case of a single agent selecting between two different job classes, and examine which of five service allocation policies performs best in the presence of learning and forgetting effects. We find that a type of specialisation minimises the steady state queue size; cross-training boosts system capacity the most; and no simple policy matches a dynamic optimal cost policy under all conditions.

Keywords: operations models; services; service science; service engineering; optimal allocation policies; capacity management; queueing theory; learning; forgetting; Markov decision process; MDP; dynamic programming; call centres; scheduling; service efficiency; cross-training. (search for similar items in EconPapers)
Date: 2008
References: Add references at CitEc
Citations:

Downloads: (external link)
http://www.inderscience.com/link.php?id=18720 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:ids:ijsoma:v:4:y:2008:i:6:p:631-651

Access Statistics for this article

More articles in International Journal of Services and Operations Management from Inderscience Enterprises Ltd
Bibliographic data for series maintained by Sarah Parker ().

 
Page updated 2025-03-19
Handle: RePEc:ids:ijsoma:v:4:y:2008:i:6:p:631-651