EconPapers    
Economics at your fingertips  
 

Optimum prediction and forecasting of wheat demand in Iran

Reza Babazadeh, Meisam Shamsi and Fatemeh Shafipour

International Journal of Applied Management Science, 2021, vol. 13, issue 2, 141-151

Abstract: Wheat is the staple food source in most countries and is grown in bad climatic conditions such as cold areas. Wheat contains about 55% carbohydrates and 20% calories. Optimum prediction of wheat demand would help policy makers to take optimum strategic decisions about the amount of domestic wheat production, import, and export for mid and long terms. In this study, firstly, the factors affecting demand for wheat are identified according to market analysis. Then, artificial neural network (ANN) method is employed for optimum forecasting of wheat demand in Iran. Different regression methods are used to justify the efficiency of the ANN model. The mean absolute percentage error (MAPE) of the ANN method is achieved equal to 4.64% which shows about 95% precision of the ANN method. According to acquired results, the ANN method could be efficiently applied for wheat demand prediction in order to take appropriate related strategic decisions.

Keywords: wheat demand; forecasting; ANN; artificial neural network; regression models. (search for similar items in EconPapers)
Date: 2021
References: Add references at CitEc
Citations:

Downloads: (external link)
http://www.inderscience.com/link.php?id=116495 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:ids:injams:v:13:y:2021:i:2:p:141-151

Access Statistics for this article

More articles in International Journal of Applied Management Science from Inderscience Enterprises Ltd
Bibliographic data for series maintained by Sarah Parker ().

 
Page updated 2025-03-19
Handle: RePEc:ids:injams:v:13:y:2021:i:2:p:141-151