EconPapers    
Economics at your fingertips  
 

Particle swarm optimised fuzzy method for prediction of water table elevation fluctuation

Shilpa Jain, Dinesh C.S. Bisht and Prakash Chandra Mathpal

International Journal of Data Analysis Techniques and Strategies, 2018, vol. 10, issue 2, 99-110

Abstract: Particle swarm optimisation (PSO) is a population-based powerful evolutionary computational technique inspired by social behaviour simulation of bird flocking and fish schooling. PSO has been applied successfully to a wide range of applications like scheduling, artificial neural networks (ANN) training, control strategy determination and ingredient mix optimisation. Fuzzy logic can easily cope up with vagueness and uncertainty in time series data. This has been applied for prediction of water table elevation, in our earlier work and results are quite promising. But, the optimisation of length of fuzzy intervals was a big constraint for researchers. In this research paper, the optimal length of fuzzy intervals in the universe of discourse is been selected using particle swarm optimisation. The results obtained after applying this combined approach to prediction of water table elevation are better than the previous method.

Keywords: fuzzy logic; particle swarm optimisation; PSO; mean square error; water table; forecasting. (search for similar items in EconPapers)
Date: 2018
References: Add references at CitEc
Citations:

Downloads: (external link)
http://www.inderscience.com/link.php?id=92444 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:ids:injdan:v:10:y:2018:i:2:p:99-110

Access Statistics for this article

More articles in International Journal of Data Analysis Techniques and Strategies from Inderscience Enterprises Ltd
Bibliographic data for series maintained by Sarah Parker ().

 
Page updated 2025-03-19
Handle: RePEc:ids:injdan:v:10:y:2018:i:2:p:99-110