EconPapers    
Economics at your fingertips  
 

An effective feature selection method based on maximum class separability for fault diagnosis of ball bearing

Tawfik Thelaidjia, Abdelkrim Moussaoui and Salah Chenikher

International Journal of Data Analysis Techniques and Strategies, 2019, vol. 11, issue 2, 115-132

Abstract: The paper deals with the development of a novel feature selection approach for bearing fault diagnosis to overcome drawbacks of the distance evaluation technique (DET); one of the well-established feature selection approaches. Its drawbacks are the influence of its effectiveness by the noise and the selection of salient features regardless of the classification system. To overcome these shortcomings, an optimal discrete wavelet transform (DWT) is firstly used to decompose the bearing vibration signal at different decomposition depths to enhance the signal to noise ratio. Then, a combination of DET with binary particle swarm optimisation (BPSO) algorithm and a criterion based on scatter matrices employed as an objective function are suggested to improve the classification performances and to reduce the computational time. Finally, support vector machine is utilised to automate the identification of different bearing conditions. From the obtained results, the effectiveness of the suggested method is proven.

Keywords: ball bearing; binary particle swarm optimisation; BPSO; discrete wavelet transform; DWT; data analysis; distance evaluation technique; DET; fault diagnosis; feature selection; scatter matrices. (search for similar items in EconPapers)
Date: 2019
References: Add references at CitEc
Citations:

Downloads: (external link)
http://www.inderscience.com/link.php?id=98817 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:ids:injdan:v:11:y:2019:i:2:p:115-132

Access Statistics for this article

More articles in International Journal of Data Analysis Techniques and Strategies from Inderscience Enterprises Ltd
Bibliographic data for series maintained by Sarah Parker ().

 
Page updated 2025-03-19
Handle: RePEc:ids:injdan:v:11:y:2019:i:2:p:115-132