A new feature subset selection model based on migrating birds optimisation
Naoual El Aboudi and
Laila Benhlima
International Journal of Data Analysis Techniques and Strategies, 2019, vol. 11, issue 2, 133-147
Abstract:
Feature selection represents a fundamental preprocessing phase in machine learning as well as data mining applications. It reduces the dimensionality of feature space by dismissing irrelevant and redundant features, which leads to better classification accuracy and less computational cost. This paper presents a new wrapper feature subset selection model based on a recently designed optimisation technique called migrating birds optimisation (MBO). Initialisation issue regarding MBO is explored to study its implications on the model behaviour by experimenting different initialisation strategies. A neighbourhood based on information gain was designed to improve the search effectiveness. The performance of the proposed model named MBO-FS is compared with some state-of-the-art methods regarding the task of feature selection on 11 UCI datasets. Simulation results show that MBO-FS method achieves promising classification accuracy using a smaller feature set.
Keywords: feature selection; migrating birds optimisation; MBO; classification. (search for similar items in EconPapers)
Date: 2019
References: Add references at CitEc
Citations:
Downloads: (external link)
http://www.inderscience.com/link.php?id=98821 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:ids:injdan:v:11:y:2019:i:2:p:133-147
Access Statistics for this article
More articles in International Journal of Data Analysis Techniques and Strategies from Inderscience Enterprises Ltd
Bibliographic data for series maintained by Sarah Parker ().