Review on recent developments in frequent itemset based document clustering, its research trends and applications
Dharmendra Singh Rajput
International Journal of Data Analysis Techniques and Strategies, 2019, vol. 11, issue 2, 176-195
Abstract:
The document data is growing at an exponential rate. It is heterogeneous, dynamic and highly unstructured in nature. These characteristics of document data pose new challenges and opportunities for the development of various models and approaches for documents clustering. Different methods adopted for the development of these models. But these techniques have their advantages and disadvantages. The primary focus of the study is to the analysis of existing methods and approaches for document clustering based on frequent itemsets. Subsequently, this research direction facilitates the exploration of the emerging trends for each extension with applications. In this paper, more than 90 recent (published after 1990) research papers are summarised that are published in various reputed journals like IEEE Transaction, ScienceDirect, Springer-link, ACM and few fundamental authoritative articles.
Keywords: document clustering; association rule mining; unstructured data; uncertain data. (search for similar items in EconPapers)
Date: 2019
References: Add references at CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://www.inderscience.com/link.php?id=98818 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:ids:injdan:v:11:y:2019:i:2:p:176-195
Access Statistics for this article
More articles in International Journal of Data Analysis Techniques and Strategies from Inderscience Enterprises Ltd
Bibliographic data for series maintained by Sarah Parker ().