Sentiment analysis-based framework for assessing internet telemedicine videos
P.M. Arunkumar,
S. Chandramathi and
S. Kannimuthu
International Journal of Data Analysis Techniques and Strategies, 2019, vol. 11, issue 4, 328-336
Abstract:
Telemedicine services through internet and mobile devices need effective medical video delivery systems. This work describes a novel framework to study the assessment of internet-based telemedicine videos using sentiment analysis. The dataset comprises more than 1,000 text comments of medical experts collected from various medical animation videos of Youtube repository. The proposed framework deploys machine learning classifiers such as Bayes net, KNN, C 4.5 decision tree, support vector machine (SVM) and SVM with particle swarm optimisation (SVM-PSO) to infer opinion mining outputs. The results portray that SVM-PSO classifier performs better in assessing the reviews of medical video content with more than 80% accuracy. The model's inference of precision and recall values using SVM-PSO algorithm shows 87.8% and 85.57% respectively and henceforth underlines its superiority over other classifiers. The concepts of sentiment analysis can be applied effectively to the web-based user comments of medical videos and the end results can be highly critical to enhance the reputation of telemedicine education across the globe.
Keywords: machine learning; telemedicine; medical videos; sentiment analysis; data analysis. (search for similar items in EconPapers)
Date: 2019
References: Add references at CitEc
Citations:
Downloads: (external link)
http://www.inderscience.com/link.php?id=103755 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:ids:injdan:v:11:y:2019:i:4:p:328-336
Access Statistics for this article
More articles in International Journal of Data Analysis Techniques and Strategies from Inderscience Enterprises Ltd
Bibliographic data for series maintained by Sarah Parker ().