Sentiment classification of review data using sentence significance score optimisation
Ketan Kumar Todi,
S.N. Muralikrishna and
B. Ashwath Rao
International Journal of Data Analysis Techniques and Strategies, 2021, vol. 13, issue 1/2, 59-71
Abstract:
A significant amount of work has been done in the field of sentiment analysis in textual data using the concepts and techniques of natural language processing (NLP). In this work, unlike the existing techniques, we present a novel method wherein we consider the significance of the sentences in formulating the opinion. Often in any review, the sentences in the review may correspond to different aspects which are often irrelevant in deciding whether the sentiment is positive or negative on a topic. Thus, we assign a sentence significance score to evaluate the overall sentiment of the review. We employ a clustering mechanism followed by the neural network approach to determine the optimal significance score for the review. The proposed supervised method shows a higher accuracy than the state-of-the-art techniques. We further determine the subjectivity of sentences and establish a relationship between subjectivity of sentences and the significance score. We experimentally show that the significance scores found in the proposed method correspond to identifying the subjective sentences and objective sentences in reviews. The sentences with low significance score corresponds to objective sentences and the sentences with high significance score corresponds to subjective sentences.
Keywords: aspect; sentiment classification; clustering; neural network; optimisation; significance score. (search for similar items in EconPapers)
Date: 2021
References: Add references at CitEc
Citations:
Downloads: (external link)
http://www.inderscience.com/link.php?id=114670 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:ids:injdan:v:13:y:2021:i:1/2:p:59-71
Access Statistics for this article
More articles in International Journal of Data Analysis Techniques and Strategies from Inderscience Enterprises Ltd
Bibliographic data for series maintained by Sarah Parker ().