Prognosis of urban environs using time series analysis for preventing overexploitation using artificial intelligence
S. Shitharth,
Hariprasath Manoharan,
Lakshmi Narayanan,
Takkedu Malathi,
S. Vatchala and
Kommu Gangadhara Rao
International Journal of Data Analysis Techniques and Strategies, 2023, vol. 15, issue 1/2, 97-115
Abstract:
In the process of urban environment, the optimisation of network enactment is shifted from operation to maintenance and monitoring stage. During such conversion it is necessary to indicate the time series representation for preventing the overexploitation problem that happens due to more number of natural resources. It is necessary to use a set of historical data to check the behaviour of current state operations at varying time periods using an intelligent optimiser. Thus this study explores the implementation of time series analysis using artificial intelligence (AI) where accurate predictions are made in the entire urban environment even with big edifices. The major difference that is observed in the proposed method as compared to existing method is that two different boundary regions are chosen with distinct point values and only in two directions the monitoring device is installed. Since AI is involved in the entire process entire characteristics on forecasting current state procedure is represented using modified evolutionary optimisation (MEO) which observes entire biological nature of neighbouring environs. Additionally comparison analysis is made using MATLAB with five case studies where the proposed method proves to be much effective for about 70% as compared to existing models.
Keywords: time series; urban environment; artificial intelligence; AI; forecast. (search for similar items in EconPapers)
Date: 2023
References: Add references at CitEc
Citations:
Downloads: (external link)
http://www.inderscience.com/link.php?id=132558 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:ids:injdan:v:15:y:2023:i:1/2:p:97-115
Access Statistics for this article
More articles in International Journal of Data Analysis Techniques and Strategies from Inderscience Enterprises Ltd
Bibliographic data for series maintained by Sarah Parker ().