EconPapers    
Economics at your fingertips  
 

Rotation-based model trees for classification

S.B. Kotsiantis

International Journal of Data Analysis Techniques and Strategies, 2010, vol. 2, issue 1, 22-37

Abstract: Structurally, a model tree is a regression method that takes the form of a decision tree with linear regression functions instead of terminal class values at its leaves. In this study, model trees were coupled with a rotation-based ensemble for solving classification problems. In order to apply this regression technique to classification problems, we considered the conditional class probability function and sought a model-tree approximation to it. During classification, the class whose model tree generated the greatest approximated probability value was chosen as the predicted class. We performed a comparison with other well-known ensembles of decision trees on standard benchmark data sets, and the performance of the proposed technique was greater in most cases.

Keywords: machine learning; classifier ensembles; combining models; model trees; classification; decision trees; rotation-based ensemble. (search for similar items in EconPapers)
Date: 2010
References: Add references at CitEc
Citations:

Downloads: (external link)
http://www.inderscience.com/link.php?id=30009 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:ids:injdan:v:2:y:2010:i:1:p:22-37

Access Statistics for this article

More articles in International Journal of Data Analysis Techniques and Strategies from Inderscience Enterprises Ltd
Bibliographic data for series maintained by Sarah Parker ().

 
Page updated 2025-03-19
Handle: RePEc:ids:injdan:v:2:y:2010:i:1:p:22-37