EconPapers    
Economics at your fingertips  
 

Determination of sample size using power analysis and optimum bin size of histogram features

V. Indira, R. Vasanthakumari, N.R. Sakthivel and V. Sugumaran

International Journal of Data Analysis Techniques and Strategies, 2011, vol. 3, issue 1, 21-41

Abstract: Vibration signals are used in fault diagnosis of rotary machines as a source of information. Lots of work have been reported on identification of faults in roller bearing by using many techniques. Of late, application of machine learning approach in fault diagnosis is gaining momentum. Machine learning approach consists of chain of activities like, data acquisition, feature extraction, feature selection and feature classification. While histogram features are used, there are still a few questions to be answered such as how many histogram bins are to be used to extract features and how many samples to be used to train the classifier. This paper provides a mathematical study to choose the bin size and the minimum sample size to train the classifier using power analysis with statistical stability. A typical bearing fault diagnosis problem is taken as a case for illustration and the results are compared with that of entropy based algorithm (J48) for determining minimum sample size and bin size.

Keywords: bin size; fault diagnosis; histogram features; machine learning; minimum sample size; power analysis; vibration signals; histogram bins; roller bearings. (search for similar items in EconPapers)
Date: 2011
References: Add references at CitEc
Citations:

Downloads: (external link)
http://www.inderscience.com/link.php?id=38804 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:ids:injdan:v:3:y:2011:i:1:p:21-41

Access Statistics for this article

More articles in International Journal of Data Analysis Techniques and Strategies from Inderscience Enterprises Ltd
Bibliographic data for series maintained by Sarah Parker ().

 
Page updated 2025-03-19
Handle: RePEc:ids:injdan:v:3:y:2011:i:1:p:21-41