EconPapers    
Economics at your fingertips  
 

Software fault prediction using Mamdani type fuzzy inference system

Ezgi Erturk and Ebru Akcapinar Sezer

International Journal of Data Analysis Techniques and Strategies, 2016, vol. 8, issue 1, 14-28

Abstract: High quality software requires the occurrence of minimum number of failures while software runs. Software fault prediction is the determining whether software modules are prone to fault or not. Identification of the modules or code segments which need detailed testing, editing or, reorganising can be possible with the help of software fault prediction systems. In literature, many studies present models for software fault prediction using some soft computing methods which use training/testing phases. As a result, they require historical data to build models. In this study, to eliminate this drawback, Mamdani type fuzzy inference system (FIS) is applied for the software fault prediction problem. Several FIS models are produced and assessed with ROC-AUC as performance measure. The results achieved are ranging between 0.7138 and 0.7304; they are encouraging us to try FIS with the different software metrics and data to demonstrate general FIS performance on this problem.

Keywords: software fault prediction; fuzzy inference system; FIS; method-level metrics; software errors; Mamdani; fuzzy logic; software faults; software development. (search for similar items in EconPapers)
Date: 2016
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)

Downloads: (external link)
http://www.inderscience.com/link.php?id=75971 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:ids:injdan:v:8:y:2016:i:1:p:14-28

Access Statistics for this article

More articles in International Journal of Data Analysis Techniques and Strategies from Inderscience Enterprises Ltd
Bibliographic data for series maintained by Sarah Parker ().

 
Page updated 2025-03-19
Handle: RePEc:ids:injdan:v:8:y:2016:i:1:p:14-28