One-Sector Nonclassical Optimal Growth: Optimality Conditions and Comparative Dynamics
Rabah Amir (),
Leonard Mirman and
William R Perkins
International Economic Review, 1991, vol. 32, issue 3, 625-44
Abstract:
The authors consider a one-sector nonclassical model of optimal economic growth, characterized by a convex-concave production function. They provide, in a dynamic-programming context, a characterization of all local (interior) maximum of the miximand of the Bellman equation. These conditions are the Euler equation and a second order condition, namely, that the marginal propensity to consume is less than one. An example is used to illustrate these conditions. Also, several comparative dynamic results are derived. In particular, it is shown that the maximum and minimum selections out of the optimal consumption correspondence shift down as the discount factor increases. Copyright 1991 by Economics Department of the University of Pennsylvania and the Osaka University Institute of Social and Economic Research Association.
Date: 1991
References: Add references at CitEc
Citations: View citations in EconPapers (64)
Downloads: (external link)
http://links.jstor.org/sici?sici=0020-6598%2819910 ... O%3B2-J&origin=repec full text (application/pdf)
Access to full text is restricted to JSTOR subscribers. See http://www.jstor.org for details.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:ier:iecrev:v:32:y:1991:i:3:p:625-44
Ordering information: This journal article can be ordered from
http://www.blackwell ... bs.asp?ref=0020-6598
Access Statistics for this article
International Economic Review is currently edited by Harold L. Cole
More articles in International Economic Review from Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association 160 McNeil Building, 3718 Locust Walk, Philadelphia, PA 19104-6297. Contact information at EDIRC.
Bibliographic data for series maintained by Wiley-Blackwell Digital Licensing () and ().