Adaptive Estimation in the Panel Data Error Component Model with Heteroskedasticity of Unknown Form
Qi Li and
Thanasis Stengos
International Economic Review, 1994, vol. 35, issue 4, 981-1000
Abstract:
The authors show that the adaptive estimation result for the heteroskedasticity of an unknown form time-series (or cross-section) model can be generalized to the panel data error components model. The authors give recursive transformations that change the error term of a random effects model and the first differenced error term of a fixed effects model into classical errors. They also propose a modified Breusch-Pagan test for testing the random individual effects. Monte Carlo evidence suggests that the proposed estimator performs adequately in small samples. Copyright 1994 by Economics Department of the University of Pennsylvania and the Osaka University Institute of Social and Economic Research Association.
Date: 1994
References: Add references at CitEc
Citations: View citations in EconPapers (18)
Downloads: (external link)
http://links.jstor.org/sici?sici=0020-6598%2819941 ... O%3B2-D&origin=repec full text (application/pdf)
Access to full text is restricted to JSTOR subscribers. See http://www.jstor.org for details.
Related works:
Working Paper: Adaptive Estimation in the Panel Data Error Component Model with Heteroskedasticity of Unknown Form (1993)
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:ier:iecrev:v:35:y:1994:i:4:p:981-1000
Ordering information: This journal article can be ordered from
http://www.blackwell ... bs.asp?ref=0020-6598
Access Statistics for this article
International Economic Review is currently edited by Harold L. Cole
More articles in International Economic Review from Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association 160 McNeil Building, 3718 Locust Walk, Philadelphia, PA 19104-6297. Contact information at EDIRC.
Bibliographic data for series maintained by Wiley-Blackwell Digital Licensing () and ().