Efficient Estimation of Additive Partially Linear Models
Qi Li
International Economic Review, 2000, vol. 41, issue 4, 1073-92
Abstract:
I consider the problem of estimating an additive partially linear model using general series estimation methods with polynomial and splines as two leading cases. I show that the finite-dimensional parameter is identified under weak conditions. I establish the root-n-normality result for the finite-dimensional parameter in the linear part of the model and show that it is asymptotically more efficient than a semiparametric estimator that ignores the additive structure. When the error is conditional homoskedastic, my finite-dimensional parameter estimator reaches the semiparametric efficiency bound. Efficient estimation when the error is conditional heteroskedastic is also discussed. Copyright 2000 by Economics Department of the University of Pennsylvania and the Osaka University Institute of Social and Economic Research Association.
Date: 2000
References: Add references at CitEc
Citations: View citations in EconPapers (141)
There are no downloads for this item, see the EconPapers FAQ for hints about obtaining it.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:ier:iecrev:v:41:y:2000:i:4:p:1073-92
Ordering information: This journal article can be ordered from
http://www.blackwell ... bs.asp?ref=0020-6598
Access Statistics for this article
International Economic Review is currently edited by Harold L. Cole
More articles in International Economic Review from Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association 160 McNeil Building, 3718 Locust Walk, Philadelphia, PA 19104-6297. Contact information at EDIRC.
Bibliographic data for series maintained by Wiley-Blackwell Digital Licensing () and ().