A Bayesian Approach to Testing for Markov-Switching in Univariate and Dynamic Factor Models
Chang-Jin Kim () and
Charles Nelson
International Economic Review, 2001, vol. 42, issue 4, 989-1013
Abstract:
Though Hamilton's (1989) Markov-switching model has been widely estimated in various contexts, formal testing for Markov-switching is not straightforward. Univariate tests in the classical framework by Hansen (1992) and Garcia (1998) do not reject the linear model for GDP. We present Bayesian tests for Markov-switching in both univariate and multivariate settings based on sensitivity of the posterior probability to the prior. We find that evidence for Markov-switching, and thus the business cycle asymmetry, is stronger in a switching version of the dynamic factor model of Stock and Watson (1991) than it is for GDP by itself.
Date: 2001
References: Add references at CitEc
Citations: View citations in EconPapers (17)
There are no downloads for this item, see the EconPapers FAQ for hints about obtaining it.
Related works:
Working Paper: A Bayesian Approach to Testing for Markov Switching in Univariate and Dynamic Factor Models (1999) 
Working Paper: A Bayesian Approach to Testing for Markov Switching in Univariate and Dynamic Factor Models (1998) 
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:ier:iecrev:v:42:y:2001:i:4:p:989-1013
Ordering information: This journal article can be ordered from
http://www.blackwell ... bs.asp?ref=0020-6598
Access Statistics for this article
International Economic Review is currently edited by Harold L. Cole
More articles in International Economic Review from Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association 160 McNeil Building, 3718 Locust Walk, Philadelphia, PA 19104-6297. Contact information at EDIRC.
Bibliographic data for series maintained by Wiley-Blackwell Digital Licensing () and ().