Comparing Sunspot Equilibrium And Lottery Equilibrium Allocations: The Finite Case
Rodney Garratt,
Todd Keister and
Karl Shell ()
International Economic Review, 2004, vol. 45, issue 2, 351-386
Abstract:
Sunspot equilibrium and lottery equilibrium are two stochastic solution concepts for nonstochastic economies. We compare these concepts in a class of completely finite, (possibly) nonconvex exchange economies with perfect markets, which requires extending the lottery model to the finite case. Every equilibrium allocation of our lottery model is also a sunspot equilibrium allocation. The converse is almost always true. There are exceptions, however: For some economies, there exist sunspot equilibrium allocations with no lottery equilibrium counterpart. Copyright 2004 by the Economics Department Of The University Of Pennsylvania And Osaka University Institute Of Social And Economic Research Association.
Date: 2004
References: Add references at CitEc
Citations: View citations in EconPapers (10)
There are no downloads for this item, see the EconPapers FAQ for hints about obtaining it.
Related works:
Working Paper: Comparing Sunspot Equilibrium and Lottery Equilibrium Allocations: The Finite Case (2002) 
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:ier:iecrev:v:45:y:2004:i:2:p:351-386
Ordering information: This journal article can be ordered from
http://www.blackwell ... bs.asp?ref=0020-6598
Access Statistics for this article
International Economic Review is currently edited by Harold L. Cole
More articles in International Economic Review from Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association 160 McNeil Building, 3718 Locust Walk, Philadelphia, PA 19104-6297. Contact information at EDIRC.
Bibliographic data for series maintained by Wiley-Blackwell Digital Licensing () and ().