SPECTRAL DENSITY ESTIMATION AND ROBUST HYPOTHESIS TESTING USING STEEP ORIGIN KERNELS WITHOUT TRUNCATION
Peter Phillips,
Yixiao Sun and
Sainan Jin
International Economic Review, 2006, vol. 47, issue 3, 837-894
Abstract:
A new class of kernels for long-run variance and spectral density estimation is developed by exponentiating traditional quadratic kernels. Depending on whether the exponent parameter is allowed to grow with the sample size, we establish different asymptotic approximations to the sampling distribution of the proposed estimators. When the exponent is passed to infinity with the sample size, the new estimator is consistent and shown to be asymptotically normal. When the exponent is fixed, the new estimator is inconsistent and has a nonstandard limiting distribution. It is shown via Monte Carlo experiments that, when the chosen exponent is small in practical applications, the nonstandard limit theory provides better approximations to the finite sample distributions of the spectral density estimator and the associated test statistic in regression settings. Copyright 2006 by the Economics Department Of The University Of Pennsylvania And Osaka University Institute Of Social And Economic Research Association.
Date: 2006
References: Add references at CitEc
Citations: View citations in EconPapers (30)
There are no downloads for this item, see the EconPapers FAQ for hints about obtaining it.
Related works:
Working Paper: Spectral Density Estimation and Robust Hypothesis Testing Using Steep Origin Kernels Without Truncation (2004) 
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:ier:iecrev:v:47:y:2006:i:3:p:837-894
Ordering information: This journal article can be ordered from
http://www.blackwell ... bs.asp?ref=0020-6598
Access Statistics for this article
International Economic Review is currently edited by Harold L. Cole
More articles in International Economic Review from Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association 160 McNeil Building, 3718 Locust Walk, Philadelphia, PA 19104-6297. Contact information at EDIRC.
Bibliographic data for series maintained by Wiley-Blackwell Digital Licensing () and ().