EconPapers    
Economics at your fingertips  
 

An RHMIoT Framework for Cardiovascular Disease Prediction and Severity Level Using Machine Learning and Deep Learning Algorithms

Sibo Prasad Patro and Neelamadhab Padhy
Additional contact information
Sibo Prasad Patro: GIET University, India
Neelamadhab Padhy: GIET University, India

International Journal of Ambient Computing and Intelligence (IJACI), 2022, vol. 13, issue 1, 1-37

Abstract: Cardiovascular disease is one of the deadliest diseases in the world. Accurate analysis and prediction for real-time heart disease are highly significant. To address this challenge, a novel IoT-based automated function monitoring system to promote the e-healthcare system is proposed. The proposed remote healthcare monitoring system uses an IoT framework (RHMIoT) using deep learning and auto encoder-based machine learning algorithms to accurately predict the presence of heart disease. The RHMIoT framework contains two phases: the first phase is to monitor the severity level of the heart disease patient in real-time, and the second phase is used in the medical decision support system to predict the accuracy level of heart disease. To train and test the open-access Framingham dataset, various deep learning and auto encoder-based machine learning techniques are used. The proposed system obtains an accuracy of 0.8714% using the auto encoder-based kernel SVM algorithm compared to other approaches.

Date: 2022
References: Add references at CitEc
Citations:

Downloads: (external link)
http://services.igi-global.com/resolvedoi/resolve.aspx?doi=10.4018/IJACI.311062 (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:igg:jaci00:v:13:y:2022:i:1:p:1-37

Access Statistics for this article

International Journal of Ambient Computing and Intelligence (IJACI) is currently edited by Nilanjan Dey

More articles in International Journal of Ambient Computing and Intelligence (IJACI) from IGI Global
Bibliographic data for series maintained by Journal Editor ().

 
Page updated 2025-03-19
Handle: RePEc:igg:jaci00:v:13:y:2022:i:1:p:1-37