Fusion of XLNet and BiLSTM-TextCNN for Weibo Sentiment Analysis in Spark Big Data Environment
Aichuan Li and
Tian Li
Additional contact information
Aichuan Li: College of Information and Electrical Engineering, Heilongjiang Bayi Agricultural University, China
Tian Li: Heilongjiang Bayi Agricultural University, China
International Journal of Ambient Computing and Intelligence (IJACI), 2023, vol. 14, issue 1, 1-18
Abstract:
This article proposes a Weibo sentiment analysis method to improve traditional algorithms' analysis efficiency and accuracy. The proposed algorithm uses deep learning in the Spark big data environment. First, the input data are converted into dynamic word vector representations using the Chinese version of the XLNet model. Then, dual-channel feature extraction is performed on the data using TextCNN and BiLSTM. The proposed algorithm uses an attention mechanism to allocate computing resources efficiently and realizes feature fusion and data classification. Comparative experiments are conducted on two public datasets under identical experimental conditions. In the NLPCC2014 and NLPCC2015 datasets, the proposed model improves the precision and F1 metrics by at least 4.26% and 2.64%, respectively. In the weibo_senti_100k dataset, the proposed model improves the precision and F1 metrics by at least 4.66% and 2.69%, respectively. The results indicate that the proposed method has better sentiment analysis and prediction abilities than existing methods.
Date: 2023
References: View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://services.igi-global.com/resolvedoi/resolve.aspx?doi=10.4018/IJACI.331744 (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:igg:jaci00:v:14:y:2023:i:1:p:1-18
Access Statistics for this article
International Journal of Ambient Computing and Intelligence (IJACI) is currently edited by Nilanjan Dey
More articles in International Journal of Ambient Computing and Intelligence (IJACI) from IGI Global
Bibliographic data for series maintained by Journal Editor ().