A Comparative Study of Statistical and Rough Computing Models in Predictive Data Analysis
Debi Acharjya and
A. Anitha
Additional contact information
Debi Acharjya: School of Computing Science and Engineering, VIT University, Vellore, India
A. Anitha: School of Information Technology and Engineering, VIT University, Vellore, India
International Journal of Ambient Computing and Intelligence (IJACI), 2017, vol. 8, issue 2, 32-51
Abstract:
Information and technology revolution has brought a radical change in the way data are collected. The data collected is of no use unless some useful information is derived from it. Therefore, it is essential to think of some predictive analysis for analyzing data and to get meaningful information. Much research has been carried out in the direction of predictive data analysis starting from statistical techniques to intelligent computing techniques and further to hybridize computing techniques. The prime objective of this paper is to make a comparative analysis between statistical, rough computing, and hybridized techniques. The comparative analysis is carried out over financial bankruptcy data set of Greek industrial bank ETEVA. It is concluded that rough computing techniques provide better accuracy 88.2% as compared to statistical techniques whereas hybridized computing techniques provides still better accuracy 94.1% as compared to rough computing techniques.
Date: 2017
References: Add references at CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://services.igi-global.com/resolvedoi/resolve. ... 018/IJACI.2017040103 (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:igg:jaci00:v:8:y:2017:i:2:p:32-51
Access Statistics for this article
International Journal of Ambient Computing and Intelligence (IJACI) is currently edited by Nilanjan Dey
More articles in International Journal of Ambient Computing and Intelligence (IJACI) from IGI Global
Bibliographic data for series maintained by Journal Editor ().