Materialized View Selection Using Self-Adaptive Perturbation Operator-Based Particle Swarm Optimization
Amit Kumar and
T. V. Vijay Kumar
Additional contact information
Amit Kumar: School of Computer and Systems Sciences, Jawaharlal Nehru University, New Delhi, India
T. V. Vijay Kumar: School of Computer and Systems Sciences, Jawaharlal Nehru University, New Delhi, India
International Journal of Applied Evolutionary Computation (IJAEC), 2020, vol. 11, issue 3, 50-67
Abstract:
A data warehouse is a central repository of time-variant and non-volatile data integrated from disparate data sources with the purpose of transforming data to information to support data analysis. Decision support applications access data warehouses to derive information using online analytical processing. The response time of analytical queries against speedily growing size of the data warehouse is substantially large. View materialization is an effective approach to decrease the response time for analytical queries and expedite the decision-making process in relational implementations of data warehouses. Selecting a suitable subset of views that deceases the response time of analytical queries and also fit within available storage space for materialization is a crucial research concern in the context of a data warehouse design. This problem, referred to as view selection, is shown to be NP-Hard. Swarm intelligence have been widely and successfully used to solve such problems. In this paper, a discrete variant of particle swarm optimization algorithm, i.e. self-adaptive perturbation operator based particle swarm optimization (SPOPSO), has been adapted to solve the view selection problem. Accordingly, SPOPSO-based view selection algorithm (SPOPSOVSA) is proposed. SPOPSOVSA selects the Top-K views in a multidimensional lattice framework. Further, the proposed algorithm is shown to perform better than the view selection algorithm HRUA.
Date: 2020
References: Add references at CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://services.igi-global.com/resolvedoi/resolve. ... 018/ijaec.2020070104 (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:igg:jaec00:v:11:y:2020:i:3:p:50-67
Access Statistics for this article
International Journal of Applied Evolutionary Computation (IJAEC) is currently edited by Sukhpal Singh Gill
More articles in International Journal of Applied Evolutionary Computation (IJAEC) from IGI Global
Bibliographic data for series maintained by Journal Editor ().