EconPapers    
Economics at your fingertips  
 

Effects of Class Imbalance Using Machine Learning Algorithms: Case Study Approach

Swati V. Narwane and Sudhir D. Sawarkar
Additional contact information
Swati V. Narwane: Datta Meghe College of Engineering, India
Sudhir D. Sawarkar: Datta Meghe College of Engineering, India

International Journal of Applied Evolutionary Computation (IJAEC), 2021, vol. 12, issue 1, 1-17

Abstract: Class imbalance is the major hurdle for machine learning-based systems. Data set is the backbone of machine learning and must be studied to handle the class imbalance. The purpose of this paper is to investigate the effect of class imbalance on the data sets. The proposed methodology determines the model accuracy for class distribution. To find possible solutions, the behaviour of an imbalanced data set was investigated. The study considers two case studies with data set divided balanced to unbalanced class distribution. Testing of the data set with trained and test data was carried out for standard machine learning algorithms. Model accuracy for class distribution was measured with the training data set. Further, the built model was tested with individual binary class. Results show that, for the improvement of the system performance, it is essential to work on class imbalance problems. The study concludes that the system produces biased results due to the majority class. In the future, the multiclass imbalance problem can be studied using advanced algorithms.

Date: 2021
References: Add references at CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://services.igi-global.com/resolvedoi/resolve. ... 018/IJAEC.2021010101 (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:igg:jaec00:v:12:y:2021:i:1:p:1-17

Access Statistics for this article

International Journal of Applied Evolutionary Computation (IJAEC) is currently edited by Sukhpal Singh Gill

More articles in International Journal of Applied Evolutionary Computation (IJAEC) from IGI Global
Bibliographic data for series maintained by Journal Editor ().

 
Page updated 2025-03-19
Handle: RePEc:igg:jaec00:v:12:y:2021:i:1:p:1-17