Real-Time Embedded Systems Scheduling Optimization: A Review on Bio-Inspired Approaches
Fateh Boutekkouk
Additional contact information
Fateh Boutekkouk: ReLaCS2 Laboratory, University of Oum el Bouaghi, Algeria
International Journal of Applied Evolutionary Computation (IJAEC), 2021, vol. 12, issue 1, 43-73
Abstract:
The embedded real-time scheduling problem is qualified as a hard multi-objective optimization problem under constraints since it should compromise between three key conflictual objectives that are tasks deadlines guarantee, energy consumption reduction, and reliability enhancement. On this fact, conventional approaches can easily fail to find a good tradeoff in particular when the design space is too vast. On the other side, bio-inspired meta-heuristics have proved their efficiency even if the design space is very large. In this framework, the authors review the most pertinent works of literature targeting the application of bio-inspired methods to resolve the real-time scheduling problem for embedded systems, notably artificial immune systems, machine learning, cellular automata, evolutionary algorithms, and swarm intelligence. A deep discussion is conducted putting the light on the main challenges of using bio-inspired methods in the context of embedded systems. At the end of this review, the authors highlight some of the future directions.
Date: 2021
References: Add references at CitEc
Citations:
Downloads: (external link)
http://services.igi-global.com/resolvedoi/resolve. ... 018/IJAEC.2021010104 (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:igg:jaec00:v:12:y:2021:i:1:p:43-73
Access Statistics for this article
International Journal of Applied Evolutionary Computation (IJAEC) is currently edited by Sukhpal Singh Gill
More articles in International Journal of Applied Evolutionary Computation (IJAEC) from IGI Global
Bibliographic data for series maintained by Journal Editor ().