EconPapers    
Economics at your fingertips  
 

An Evolutionary Functional Link Neural Fuzzy Model for Financial Time Series Forecasting

Sugato Chakravarty (), P. K. Dash, V. Ravikumar Pandi and B. K. Panigrahi
Additional contact information
P. K. Dash: Siksha O Anusandhan University, India
V. Ravikumar Pandi: Indian Institute of Technology Delhi, India
B. K. Panigrahi: Indian Institute of Technology Delhi, India

International Journal of Applied Evolutionary Computation (IJAEC), 2011, vol. 2, issue 3, 39-58

Abstract: This paper proposes a hybrid model, evolutionary functional link neural fuzzy model (EFLNF), to forecast financial time series where the parameters are optimized by two most efficient evolutionary algorithms: (a) genetic algorithm (GA) and (b) particle swarm optimization (PSO). When the periodicity is just one day, PSO produces a better result than that of GA. But the gap in the performance between them increases as periodicity increases. The convergence speed is also better in case of PSO for one week and one month a head prediction. To testify the superiority of the EFLNF, a number of comparative studies have been made. First, functional link artificial neural network (FLANN) and functional link neural fuzzy (FLNF) were combined with back propagation (BP) learning algorithm. The result shows that FLNF performs better than FLANN. Again, FLNF is compared with EFLNF where the latter outperforms the former irrespective of the periodicity or the learning algorithms with which it has been combined. All models are used to predict the most chaotic financial time series data; BSE Sensex and S&P CNX Nifty stock indices one day, one week and one month in advance.

Date: 2011
References: Add references at CitEc
Citations:

Downloads: (external link)
http://services.igi-global.com/resolvedoi/resolve. ... 4018/jaec.2011070104 (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:igg:jaec00:v:2:y:2011:i:3:p:39-58

Access Statistics for this article

International Journal of Applied Evolutionary Computation (IJAEC) is currently edited by Sukhpal Singh Gill

More articles in International Journal of Applied Evolutionary Computation (IJAEC) from IGI Global
Bibliographic data for series maintained by Journal Editor ().

 
Page updated 2025-03-19
Handle: RePEc:igg:jaec00:v:2:y:2011:i:3:p:39-58