New Hybrid Discrete PSO for Solving Non Convex Trim Loss Problem
Kusum Deep,
Pinkey Chauhan and
Millie Pant
Additional contact information
Kusum Deep: Indian Institute of Technology Roorkee, India
Pinkey Chauhan: Indian Institute of Technology Roorkee, India
Millie Pant: Indian Institute of Technology Roorkee, India
International Journal of Applied Evolutionary Computation (IJAEC), 2012, vol. 3, issue 2, 19-41
Abstract:
Trim loss minimization is the most common problem that arises during the cutting process, when products with variable width or length are to be produced in bulk to satisfy customer demands from limited available/stocked materials. The aim is to minimize inevitable waste material. Under various environmental and physical constraints, the trim loss problem is highly constrained, non convex, nonlinear, and with integer restriction on all variables. Due to the highly complex nature of trim loss problem, it is not easy for manufacturers to select an appropriate method that provides a global optimal solution, satisfying all restrictions. This paper proposes a discrete variant of PSO, which embeds a mutation operator, namely power mutation during the position update stage. The proposed variant is named as Hybrid Discrete PSO (HDPSO). Binary variables in HDPSO are generated using sigmoid function with its domain derived from position update equation. Four examples with different levels of complexity are solved and results are compared with two recently developed GA and PSO variants. The computational studies indicate the competitiveness of proposed variant over other considered methods.
Date: 2012
References: Add references at CitEc
Citations:
Downloads: (external link)
http://services.igi-global.com/resolvedoi/resolve. ... 4018/jaec.2012040102 (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:igg:jaec00:v:3:y:2012:i:2:p:19-41
Access Statistics for this article
International Journal of Applied Evolutionary Computation (IJAEC) is currently edited by Sukhpal Singh Gill
More articles in International Journal of Applied Evolutionary Computation (IJAEC) from IGI Global
Bibliographic data for series maintained by Journal Editor ().