EconPapers    
Economics at your fingertips  
 

A New Radial Basis Function Artificial Neural Network based Recognition for Kurdish Manuscript

Behnam Zebardast and Isa Maleki
Additional contact information
Behnam Zebardast: Department of Computer, Boukan Branch, Islamic Azad University, Boukan, Iran
Isa Maleki: Department of Computer Engineering, Dehdasht Branch, Islamic Azad University, Dehdasht, Iran

International Journal of Applied Evolutionary Computation (IJAEC), 2013, vol. 4, issue 4, 72-87

Abstract: During recent decades, recognizing letters was a considerable discussion for artificial intelligence researchers and recognize letters due to the variety of languages and different approaches have many challenges. The Artificial Neural Networks (ANNs) are framed based on particular application such as recognition pattern and data classification through learning process is configured. So, it is a proper approach to recognize letters. Kurdish language has two popular handwritings based on Arabic and Latin. In this paper, Radial Basis Function (RBF) of ANNs is used to recognize Kurdish-Latin manuscripts. Although, the authors' proposed method is also used to recognize the letters of all Latin languages which include English, Turkish and etc. are used. The authors implement RBF of ANNs in MATLAB environment. In this paper, the efficiency criteria is supposed to minimize the Mean Square Error (MSE) to recognize Kurdish letters and maximize recognition accuracy of Kurdish letters in training and testing stage of RBF of ANNs. The recognition accuracy in training and testing stages are 100% and 96.7742%, respectively.

Date: 2013
References: Add references at CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://services.igi-global.com/resolvedoi/resolve. ... 018/ijaec.2013100105 (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:igg:jaec00:v:4:y:2013:i:4:p:72-87

Access Statistics for this article

International Journal of Applied Evolutionary Computation (IJAEC) is currently edited by Sukhpal Singh Gill

More articles in International Journal of Applied Evolutionary Computation (IJAEC) from IGI Global
Bibliographic data for series maintained by Journal Editor ().

 
Page updated 2025-03-19
Handle: RePEc:igg:jaec00:v:4:y:2013:i:4:p:72-87