An Incorporation of the Fuzzy Greedy Search Heuristic With Evolutionary Approaches for Combinatorial Optimization in Operations Management
Kaveh Sheibani
Additional contact information
Kaveh Sheibani: ORLab Analytics, Vancouver, Canada
International Journal of Applied Evolutionary Computation (IJAEC), 2017, vol. 8, issue 2, 58-72
Abstract:
Although greedy algorithms are important, nowadays it is well assumed that the solutions they obtain can be used as a starting point for more sophisticated methods. This paper describes an evolutionary approach which is based on genetic algorithms (GA). A constructive heuristic, so-called fuzzy greedy search (FGS) is employed to generate an initial population for the proposed GA. The effectiveness and efficiency of the proposed hybrid method are demonstrated on permutation flow-shop scheduling as one of the most widely studied hard combinatorial optimization problems in the area of operational research.
Date: 2017
References: Add references at CitEc
Citations:
Downloads: (external link)
http://services.igi-global.com/resolvedoi/resolve. ... 018/IJAEC.2017040104 (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:igg:jaec00:v:8:y:2017:i:2:p:58-72
Access Statistics for this article
International Journal of Applied Evolutionary Computation (IJAEC) is currently edited by Sukhpal Singh Gill
More articles in International Journal of Applied Evolutionary Computation (IJAEC) from IGI Global
Bibliographic data for series maintained by Journal Editor ().