EconPapers    
Economics at your fingertips  
 

An Improved Generalized Quantum-Inspired Evolutionary Algorithm for Multiple Knapsack Problem

Sulabh Bansal and C. Patvardhan
Additional contact information
Sulabh Bansal: School of Computing and Information Technology, Manipal University Jaipur, Jaipur, India
C. Patvardhan: Faculty of Engineering, Dayalbagh Educational Institute (DEI), Agra, India

International Journal of Applied Evolutionary Computation (IJAEC), 2018, vol. 9, issue 1, 17-51

Abstract: This article describes how the 0/1 Multiple Knapsack Problem (MKP), a generalization of popular 0/1 Knapsack Problem, is NP-hard and harder than simple Knapsack Problem. Solution of MKP involves two levels of choice – one for selecting an item to be placed and the other for selecting the knapsack in which it is to be placed. Quantum Inspired Evolutionary Algorithms (QIEAs), a subclass of Evolutionary algorithms, have been shown to be effective in solving difficult problems particularly NP-hard combinatorial optimization problems. QIEAs provide a general framework which needs to be customized according to the requirements of a given problem to obtain good solutions in reasonable time. An existing QIEA for MKP (QIEA-MKP) is based on the representation where a Q-bit collapse into a binary number. But decimal numbers are required to identify the knapsack where an item is placed. The implementation based on such representation suffers from overhead of frequent conversion from binary numbers to decimal numbers and vice versa. The generalized QIEA (GQIEA) is based on a representation where a Q-bit can collapse into an integer and thus no inter conversion between binary and decimal is required. A set of carefully selected features have been incorporated in proposed GQIEA-MKP to obtain better solutions in lesser time. Comparison with QIEA-MKP shows that GQIEA-MKP outperforms it in providing better solutions in lesser time for large sized MKPs. The generalization proposed can be used with advantage in other Combinatorial Optimization problems with integer strings as solutions.

Date: 2018
References: Add references at CitEc
Citations:

Downloads: (external link)
http://services.igi-global.com/resolvedoi/resolve. ... 018/IJAEC.2018010102 (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:igg:jaec00:v:9:y:2018:i:1:p:17-51

Access Statistics for this article

International Journal of Applied Evolutionary Computation (IJAEC) is currently edited by Sukhpal Singh Gill

More articles in International Journal of Applied Evolutionary Computation (IJAEC) from IGI Global
Bibliographic data for series maintained by Journal Editor ().

 
Page updated 2025-03-19
Handle: RePEc:igg:jaec00:v:9:y:2018:i:1:p:17-51