EconPapers    
Economics at your fingertips  
 

The Design and Development of a Modified Artificial Bee Colony Approach for the Traveling Thief Problem

Saad T. Alharbi
Additional contact information
Saad T. Alharbi: Taibah University, Madinah, Saudi Arabia

International Journal of Applied Evolutionary Computation (IJAEC), 2018, vol. 9, issue 3, 32-47

Abstract: The traveling thief problem (TTP) is a benchmark problem that consists of two well-known problems, the traveling salesman problem (TSP) and the knapsack problem (KP). It was defined to imitate complex real-world applications that comprise different interdependent sub-problems. Various approaches were proposed in the literature to solve such a problem. These approaches mostly focus on local search algorithms, heuristics methods and evolutionary approaches. In addition, some of these approaches concentrated on solving the problem by considering each sub-problem independently. Thus far, limited approaches were proposed to solve the problem using swarm intelligence. In this article, the authors introduce a modified artificial bees colony (ABC) algorithm that addresses the TTP in an interdependent manner. The performance of this approach was compared with various recent approaches in the literature using different benchmark instances. The obtained results demonstrated that it is competitive with the state-of-the-art approaches, especially on small and medium instances.

Date: 2018
References: Add references at CitEc
Citations:

Downloads: (external link)
http://services.igi-global.com/resolvedoi/resolve. ... 018/IJAEC.2018070104 (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:igg:jaec00:v:9:y:2018:i:3:p:32-47

Access Statistics for this article

International Journal of Applied Evolutionary Computation (IJAEC) is currently edited by Sukhpal Singh Gill

More articles in International Journal of Applied Evolutionary Computation (IJAEC) from IGI Global
Bibliographic data for series maintained by Journal Editor ().

 
Page updated 2025-03-19
Handle: RePEc:igg:jaec00:v:9:y:2018:i:3:p:32-47