Soybean Price Pattern Discovery Via Toeplitz Inverse Covariance-Based Clustering
Hua Ling Deng and
Yǔ Qiàn Sūn
Additional contact information
Hua Ling Deng: Northeast Agricultural University, Harbin, China
Yǔ Qiàn Sūn: Northeast Agricultural University, Harbin, China
International Journal of Agricultural and Environmental Information Systems (IJAEIS), 2019, vol. 10, issue 4, 1-17
Abstract:
The high volatility of world soybean prices has caused uncertainty and vulnerability particularly in the developing countries. The clustering of time series is a serviceable tool for discovering soybean price patterns in temporal data. However, traditional clustering method cannot represent the continuity of price data very well, nor keep a watchful eye on the correlation between factors. In this work, the authors use the Toeplitz Inverse Covariance-Based Clustering of Multivariate Time Series Data (TICC) to soybean price pattern discovery. This is a new method for multivariate time series clustering, which can simultaneously segment and cluster the time series data. Each pattern in the TICC method is defined by a Markov random field (MRF), characterizing the interdependencies between different factors of that pattern. Based on this representation, the characteristics of each pattern and the importance of each factor can be portrayed. The work provides a new way of thinking about market price prediction for agricultural products.
Date: 2019
References: Add references at CitEc
Citations: View citations in EconPapers (1) Track citations by RSS feed
Downloads: (external link)
http://services.igi-global.com/resolvedoi/resolve. ... 18/IJAEIS.2019100101 (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:igg:jaeis0:v:10:y:2019:i:4:p:1-17
Access Statistics for this article
International Journal of Agricultural and Environmental Information Systems (IJAEIS) is currently edited by Frederic Andres
More articles in International Journal of Agricultural and Environmental Information Systems (IJAEIS) from IGI Global
Bibliographic data for series maintained by Journal Editor ().