Prediction of Hot Topics of Agricultural Public Opinion Based on Attention Mechanism LSTM Model
Lifang Fu and
Feifei Zhao
Additional contact information
Lifang Fu: Northeast Agricultural University, China
Feifei Zhao: Northeast Agricultural University, China
International Journal of Agricultural and Environmental Information Systems (IJAEIS), 2021, vol. 12, issue 4, 1-16
Abstract:
In order to timely and accurately analyze the focus and appeal of public opinion on the Internet, A LSTM-ATTN model was proposed to extract the hot topics and predict their changing trend based on tens of thousands of news and commentary messages. First, an improved LDA model was used to extract hot words and classify the hot topics. Aimed to more accurately describe the detailed characteristics and long-term trend of topic popularity, a prediction model is proposed based on attention mechanism Long Short-Term Memory (LSTM) network, which named LSTM-ATTN model. A large number of numerical experiments were carried out using the public opinion information of "African classical swine fever" event in China. According to results of evaluation indexes, the relative superiority of LSTM-ATTN model was demonstrated. It can capture and reflect the inherent characteristics and periodic fluctuations of the agricultural public opinion information. Also, it has higher convergence efficiency and prediction accuracy.
Date: 2021
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
http://services.igi-global.com/resolvedoi/resolve.aspx?doi=10.4018/IJAEIS.289429 (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:igg:jaeis0:v:12:y:2021:i:4:p:1-16
Access Statistics for this article
International Journal of Agricultural and Environmental Information Systems (IJAEIS) is currently edited by Frederic Andres
More articles in International Journal of Agricultural and Environmental Information Systems (IJAEIS) from IGI Global
Bibliographic data for series maintained by Journal Editor ().