Forecasting Rice Production in West Bengal State in India: Statistical vs. Computational Intelligence Techniques
Arindam Chaudhuri
Additional contact information
Arindam Chaudhuri: Faculty of Post Graduate Studies and Research, Computer Engineering and Technology, Marwadi Education Foundation Group of Institutions, Rajkot, Gujarat, India
International Journal of Agricultural and Environmental Information Systems (IJAEIS), 2013, vol. 4, issue 4, 68-91
Abstract:
Forecasting rice production is a challenging problem in agricultural statistics. The inherent difficulty lies in demand and supply affected by many uncertain factors viz. economic policies, agricultural factors, credit measures, foreign trade etc. which interact in a complex manner. Since last few decades, Statistical techniques are used for developing predictive models to estimate required parameters. Determination of nature of rice production time series data is difficult, expensive, time consuming and involves tedious tests. In this paper, we use Interval Type Fuzzy Auto Regressive Integrated Moving Average (ITnARIMA), Adaptive Neuro Fuzzy Inference System (ANFIS) and Modified Regularized Least Squares Fuzzy Support Vector Regression (MRLSFSVR) for prediction of Productivity Index percent (PI %) of rice production time series data and compare it with traditional Statistical tool of Multiple Regression. The accuracies of ITnARIMA and ANFIS techniques are evaluated as relatively similar. It is found that ANFIS exhibits high performance than ITnARIMA, MRLSFSVR and Multiple Regression for predicting PI %. The performance comparison shows that Computational Intelligence paradigm is a promising tool for minimizing uncertainties in rice production data. Further Computational Intelligence techniques also minimize potential inconsistency of correlations.
Date: 2013
References: Add references at CitEc
Citations:
Downloads: (external link)
http://services.igi-global.com/resolvedoi/resolve. ... 18/ijaeis.2013100104 (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:igg:jaeis0:v:4:y:2013:i:4:p:68-91
Access Statistics for this article
International Journal of Agricultural and Environmental Information Systems (IJAEIS) is currently edited by Frederic Andres
More articles in International Journal of Agricultural and Environmental Information Systems (IJAEIS) from IGI Global
Bibliographic data for series maintained by Journal Editor ().