Cross-Project Change Prediction Using Meta-Heuristic Techniques
Ankita Bansal and
Sourabh Jajoria
Additional contact information
Ankita Bansal: Netaji Subhas Institute of Technology, Delhi, India
Sourabh Jajoria: Netaji Subhas Institute of Technology, Delhi, India
International Journal of Applied Metaheuristic Computing (IJAMC), 2019, vol. 10, issue 1, 43-61
Abstract:
Changes in software systems are inevitable. Identification of change-prone modules can help developers to focus efforts and resources on them. In this article, the authors conduct various intra-project and cross-project change predictions. The authors use distributional characteristics of dataset to generate rules which can be used for successful change prediction. The authors analyze the effectiveness of meta-heuristic decision trees in generating rules for successful cross-project change prediction. The employed meta-heuristic algorithms are hybrid decision tree genetic algorithms and oblique decision trees with evolutionary learning. The authors compare the performance of these meta-heuristic algorithms with C4.5 decision tree model. The authors observe that the accuracy of C4.5 decision tree is 73.33%, whereas the accuracy of the hybrid decision tree genetic algorithm and oblique decision tree are 75.00% and 75.56%, respectively. These values indicate that distributional characteristics are helpful in identifying suitable training set for cross-project change prediction.
Date: 2019
References: Add references at CitEc
Citations:
Downloads: (external link)
http://services.igi-global.com/resolvedoi/resolve. ... 018/IJAMC.2019010103 (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:igg:jamc00:v:10:y:2019:i:1:p:43-61
Access Statistics for this article
International Journal of Applied Metaheuristic Computing (IJAMC) is currently edited by Peng-Yeng Yin
More articles in International Journal of Applied Metaheuristic Computing (IJAMC) from IGI Global
Bibliographic data for series maintained by Journal Editor ().