EconPapers    
Economics at your fingertips  
 

Search for Prioritized Test Cases during Web Application Testing

Munish Khanna, Naresh Chauhan and Dilip Kumar Sharma
Additional contact information
Munish Khanna: YMCA University of Science & Technology, Faridabad, India
Naresh Chauhan: YMCA University, Faridabad, India
Dilip Kumar Sharma: GLA University, Mathura, India

International Journal of Applied Metaheuristic Computing (IJAMC), 2019, vol. 10, issue 2, 1-26

Abstract: Regression testing of evolving software is a critical constituent of the software development process. Due to resources constraints, test case prioritization is one of the strategies followed in regression testing during which a test case that satisfies predefined objectives the most, as the tester perceives, would be executed the earliest. In this study, all the experiments were performed on three web applications consisting of 65 to 100 pages with lines of code ranging from 5000 to 7000. Various state-of-the-art approaches such as, heuristic approaches, Greedy approaches, and meta heuristic approaches were applied so as to identify the prioritized test sequence which maximizes the value of average percentage of fault detection. Performance of these algorithms was compared using different parameters and it was concluded that the Artificial Bee Colony algorithm performs better than all. Two novel greedy algorithms are also proposed in the study, of which the goal is to smartly manage the state of a tie, where a tie exhibits the condition that all the test cases participating in the tie are of equal significance in achieving the objective. It has also been validated that the performance of these novel proposed algorithm(s) is better than that of traditionally followed greedy approach, most of the time.

Date: 2019
References: Add references at CitEc
Citations:

Downloads: (external link)
http://services.igi-global.com/resolvedoi/resolve. ... 018/IJAMC.2019040101 (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:igg:jamc00:v:10:y:2019:i:2:p:1-26

Access Statistics for this article

International Journal of Applied Metaheuristic Computing (IJAMC) is currently edited by Peng-Yeng Yin

More articles in International Journal of Applied Metaheuristic Computing (IJAMC) from IGI Global
Bibliographic data for series maintained by Journal Editor ().

 
Page updated 2025-03-19
Handle: RePEc:igg:jamc00:v:10:y:2019:i:2:p:1-26