EconPapers    
Economics at your fingertips  
 

An Improved Genetic Algorithm and A New Discrete Cuckoo Algorithm for Solving the Classical Substitution Cipher

Ashish Jain and Narendra S. Chaudhari
Additional contact information
Ashish Jain: Indian Institute of Technology Indore, Indore, India & Manipal University Jaipur, Jaipur, India
Narendra S. Chaudhari: Indian Institute of Technology Indore, Indore, India

International Journal of Applied Metaheuristic Computing (IJAMC), 2019, vol. 10, issue 2, 109-130

Abstract: Searching secret key of classical ciphers in the keyspace is a challenging NP-complete problem that can be successfully solved using metaheuristic techniques. This article proposes two metaheuristic techniques: improved genetic algorithm (IGA) and a new discrete cuckoo search (CS) algorithm for solving a classical substitution cipher. The efficiency and effectiveness of the proposed techniques are compared to the existing tabu search (TS) and genetic algorithm (GA) techniques using three criteria: (a) average number of key elements correctly detected, (b) average number of keys examined before determining the required key, and (c) the mean performance time. As per the results obtained, the improved GA is comparatively better than the existing GA for criteria (a) and (c), while the proposed CS strategy is significantly better than rest of the algorithms (i.e., GA, IGA, and TS) for all three criteria. The obtained results indicate that the proposed CS technique can be an efficient and effective option for solving other similar NP-complete combinatorial problems also.

Date: 2019
References: Add references at CitEc
Citations:

Downloads: (external link)
http://services.igi-global.com/resolvedoi/resolve. ... 018/IJAMC.2019040105 (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:igg:jamc00:v:10:y:2019:i:2:p:109-130

Access Statistics for this article

International Journal of Applied Metaheuristic Computing (IJAMC) is currently edited by Peng-Yeng Yin

More articles in International Journal of Applied Metaheuristic Computing (IJAMC) from IGI Global
Bibliographic data for series maintained by Journal Editor ().

 
Page updated 2025-03-19
Handle: RePEc:igg:jamc00:v:10:y:2019:i:2:p:109-130