EconPapers    
Economics at your fingertips  
 

Brain MR Image Multilevel Thresholding by Using Particle Swarm Optimization, Otsu Method and Anisotropic Diffusion

Abdul Kayom Md Khairuzzaman and Saurabh Chaudhury
Additional contact information
Abdul Kayom Md Khairuzzaman: Department of Electrical Engineering, National Institute of Technology Silchar, Silchar, India
Saurabh Chaudhury: Department of Electrical Engineering, National Institute of Technology Silchar, Silchar, India

International Journal of Applied Metaheuristic Computing (IJAMC), 2019, vol. 10, issue 3, 91-106

Abstract: Multilevel thresholding is widely used in brain magnetic resonance (MR) image segmentation. In this article, a multilevel thresholding-based brain MR image segmentation technique is proposed. The image is first filtered using anisotropic diffusion. Then multilevel thresholding based on particle swarm optimization (PSO) is performed on the filtered image to get the final segmented image. Otsu function is used to select the thresholds. The proposed technique is compared with standard PSO and bacterial foraging optimization (BFO) based multilevel thresholding techniques. The objective image quality metrics such as Peak Signal to Noise Ratio (PSNR) and Mean Structural SIMilarity (MSSIM) index are used to evaluate the quality of the segmented images. The experimental results suggest that the proposed technique gives significantly better-quality image segmentation compared to the other techniques when applied to T2-weitghted brain MR images.

Date: 2019
References: Add references at CitEc
Citations:

Downloads: (external link)
http://services.igi-global.com/resolvedoi/resolve. ... 018/IJAMC.2019070105 (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:igg:jamc00:v:10:y:2019:i:3:p:91-106

Access Statistics for this article

International Journal of Applied Metaheuristic Computing (IJAMC) is currently edited by Peng-Yeng Yin

More articles in International Journal of Applied Metaheuristic Computing (IJAMC) from IGI Global
Bibliographic data for series maintained by Journal Editor ().

 
Page updated 2025-03-19
Handle: RePEc:igg:jamc00:v:10:y:2019:i:3:p:91-106