Ultrasonic Machining Process Optimization by Cuckoo Search and Chicken Swarm Optimization Algorithms
Bappa Acherjee,
Debanjan Maity and
Arunanshu S. Kuar
Additional contact information
Bappa Acherjee: Department of Production Engineering, Birla Institute of Technology Mesra, Ranchi, India
Debanjan Maity: Department of Mechanical Engineering, IIT Kharagpur, Kharagpur, India
Arunanshu S. Kuar: Department of Production Engineering, Jadavpur University, Kolkata, India
International Journal of Applied Metaheuristic Computing (IJAMC), 2020, vol. 11, issue 2, 1-26
Abstract:
The ultrasonic machining (USM) process has been analyzed in the present study to obtain the desired process responses by optimizing machining parameters using cuckoo search (CS) and chicken swarm optimization (CSO), two powerful nature-inspired, population and swarm-intelligence-based metaheuristic algorithms. The CS and CSO algorithms have been compared with other non-conventional optimization techniques in terms of optimal results, convergence, accuracy, and computational time. It is found that CS and CSO algorithms predict superior single and multi-objective optimization results than gravitational search algorithms (GSAs), genetic algorithms (GAs), particle swarm optimization (PSO) algorithms, ant colony optimization (ACO) algorithms and artificial bee colony (ABC) algorithms, and gives exactly the same results as predicted by the fireworks algorithm (FWA). The CS algorithm outperforms all other algorithms namely CSO, FWA, GSA, GA, PSO, ACO, and ABC algorithms in terms of mean computational time, whereas, the CSO algorithm outperforms all other algorithms except for the CS and GSA algorithms.
Date: 2020
References: Add references at CitEc
Citations:
Downloads: (external link)
http://services.igi-global.com/resolvedoi/resolve. ... 018/IJAMC.2020040101 (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:igg:jamc00:v:11:y:2020:i:2:p:1-26
Access Statistics for this article
International Journal of Applied Metaheuristic Computing (IJAMC) is currently edited by Peng-Yeng Yin
More articles in International Journal of Applied Metaheuristic Computing (IJAMC) from IGI Global
Bibliographic data for series maintained by Journal Editor ().