EconPapers    
Economics at your fingertips  
 

VNS Metaheuristic Based on Thresholding Functions for Brain MRI Segmentation

Mariem Miledi and Souhail Dhouib
Additional contact information
Mariem Miledi: Institut Supérieur de Gestion Industrielle de Sfax, Université de Sfax, Tunisia
Souhail Dhouib: Institut Supérieur de Gestion Industrielle de Sfax, Université de Sfax, Tunisia

International Journal of Applied Metaheuristic Computing (IJAMC), 2021, vol. 12, issue 1, 94-110

Abstract: Image segmentation is a very crucial step in medical image analysis which is the first and the most important task in many clinical interventions. The authors propose in this paper to apply the variable neighborhood search (VNS) metaheuristic on the problem of brain magnetic resonance images (MRI) segmentation. In fact, by reviewing the literature, they notice that when the number of classes increases the computational time of the exhaustive methods grows exponentially with the number of required classes. That's why they exploit the VNS algorithm to optimize two maximizing thresholding functions which are the between-class variance (the Otsu's function) and the entropy thresholding (the Kapur's function). Thus, two versions of the VNS metaheuristic are respectively obtained: the VNS-Otsu and the VNS-Kapur. These two novel proposed thresholding methods are tested on a set of benchmark brain MRI to show their robustness and proficiency.

Date: 2021
References: Add references at CitEc
Citations:

Downloads: (external link)
http://services.igi-global.com/resolvedoi/resolve. ... 018/IJAMC.2021010106 (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:igg:jamc00:v:12:y:2021:i:1:p:94-110

Access Statistics for this article

International Journal of Applied Metaheuristic Computing (IJAMC) is currently edited by Peng-Yeng Yin

More articles in International Journal of Applied Metaheuristic Computing (IJAMC) from IGI Global
Bibliographic data for series maintained by Journal Editor ().

 
Page updated 2025-03-19
Handle: RePEc:igg:jamc00:v:12:y:2021:i:1:p:94-110