Improved Memetic NSGA-II Using a Deep Neighborhood Search
Samir Mahdi and
Brahim Nini
Additional contact information
Samir Mahdi: University Larbi Ben M'hidi Oum El Bouaghi, Algeria
Brahim Nini: University Larbi Ben M'hidi Oum El Bouaghi, Algeria
International Journal of Applied Metaheuristic Computing (IJAMC), 2021, vol. 12, issue 4, 138-154
Abstract:
Elitist non-sorted genetic algorithms as part of Pareto-based multi-objective evolutionary algorithms seems to be one of the most efficient algorithms for multi-objective optimization. However, it has some shortcomings, such as low convergence accuracy, uneven Pareto front distribution, and slow convergence. A number of review papers using memetic technique to improve NSGA-II have been published. Hence, it is imperative to improve memetic NSGA-II by increasing its solving accuracy. In this paper, an improved memetic NSGA-II, called deep memetic non-sorted genetic algorithm (DM-NSGA-II), is proposed, aiming to obtain more non-dominated solutions uniformly distributed and better converged near the true Pareto-optimal front. The proposed algorithm combines the advantages of both exact and heuristic approaches. The effectiveness of DM-NSGA-II is validated using well-known instances taken from the standard literature on multi-objective knapsack problem. As will be shown, the performance of the proposed algorithm is demonstrated by comparing it with M-NSGA-II using hypervolume metric.
Date: 2021
References: Add references at CitEc
Citations:
Downloads: (external link)
http://services.igi-global.com/resolvedoi/resolve. ... 018/IJAMC.2021100108 (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:igg:jamc00:v:12:y:2021:i:4:p:138-154
Access Statistics for this article
International Journal of Applied Metaheuristic Computing (IJAMC) is currently edited by Peng-Yeng Yin
More articles in International Journal of Applied Metaheuristic Computing (IJAMC) from IGI Global
Bibliographic data for series maintained by Journal Editor ().