Melanoma Detection by Meta-Heuristically-Optimized MLP Parameters Using Non-Dermatoscopy Images
Soumen Mukherjee,
Arunabha Adhikari and
Madhusudan Roy
Additional contact information
Soumen Mukherjee: RCC Institute of Infromation Technology, India
Arunabha Adhikari: West Bengal State University, India
Madhusudan Roy: Saha Institute of Nuclear Physics, India
International Journal of Applied Metaheuristic Computing (IJAMC), 2021, vol. 12, issue 4, 177-200
Abstract:
This paper represents a scheme of melanoma detection using handcrafted feature set with meta-heuristically optimized multilayer perceptron (MLP) parameters. Features including shape, color, and texture are extracted from camera images of skin lesion collected from University of Waterloo database. The features are used in two different ways for binary classification of the data into benign and malignant class. 1) The extracted features are ranked on their relevance using ReleifF ranking algorithm and also converted into PCA components and ranked according to their variance. Best result is obtained with 50 best ranked raw features with accuracy of 87.1%. 2) All 1,888 features are fed to an MLP with two hidden layers, with number of neurons optimized by two different metaheuristic algorithms, namely particle swarm optimization (PSO) and simulated annealing (SA) separately. The latter method is found to be more efficient, and an accuracy of 88.38%, sensitivity of 92.22%, and specificity of 83.07% are achieved by PSO, which is better in comparison with the latest research on this dataset.
Date: 2021
References: Add references at CitEc
Citations:
Downloads: (external link)
http://services.igi-global.com/resolvedoi/resolve. ... 018/IJAMC.2021100110 (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:igg:jamc00:v:12:y:2021:i:4:p:177-200
Access Statistics for this article
International Journal of Applied Metaheuristic Computing (IJAMC) is currently edited by Peng-Yeng Yin
More articles in International Journal of Applied Metaheuristic Computing (IJAMC) from IGI Global
Bibliographic data for series maintained by Journal Editor ().